Jawaban:
[tex]\large\text{$\begin{aligned}\begin{pmatrix}\bf-4\\\bf-7\end{pmatrix}\end{aligned}$}[/tex]
Pembahasan
Vektor
[tex]\large\text{$\begin{aligned}&\textsf{Diketahui: }\overrightarrow{e}=\begin{pmatrix}4\\7\end{pmatrix}\\\\&\textsf{Misalkan $\overrightarrow{e'}$ atau $\overleftarrow{e}$ adalah}\\&\textsf{invers dari vektor $\overrightarrow{e}$, maka:}\\&\overrightarrow{e}+\overrightarrow{e'}=\begin{pmatrix}0\\0\end{pmatrix}\\&{\iff}\overrightarrow{e'}=\begin{pmatrix}0\\0\end{pmatrix}-\overrightarrow{e}\\&{\qquad\quad\ \,}=\begin{pmatrix}0\\0\end{pmatrix}-\begin{pmatrix}4\\7\end{pmatrix}\end{aligned}$}[/tex]
[tex]\large\text{$\begin{aligned}&{\qquad\quad\ \,}=\begin{pmatrix}0-4\\0-7\end{pmatrix}\\&{\qquad\quad\ \,}=\begin{pmatrix}-4\\-7\end{pmatrix}\\\\&{\therefore\quad}\textsf{Invers dari vektor $\overrightarrow{e}$ adalah}\\&{\qquad}\boxed{\ \overrightarrow{e'}=\overleftarrow{e}=\begin{pmatrix}\bf-4\\\bf-7\end{pmatrix}\bf\ }\end{aligned}$}[/tex]
[answer.2.content]